Tuesday, 3 October 2017

Pronosticar El Uso De Promedio Móvil En Excel


Mover Forecasting media Introducción. Como se puede adivinar que estamos buscando a algunos de los métodos más primitivos a los pronósticos. Pero esperemos que estos son, al menos, una introducción a la pena algunos de los problemas informáticos relacionados con la aplicación de las previsiones en hojas de cálculo. En este sentido vamos a seguir iniciando al principio y empezar a trabajar con el movimiento promedio de las proyecciones. Mover promedio de las proyecciones. Todo el mundo está familiarizado con el movimiento promedio de las proyecciones con independencia de que ellos creen que son. Todos los estudiantes universitarios que hacen todo el tiempo. Piense en sus resultados de las pruebas en un curso en el que va a tener cuatro pruebas durante el semestre. Vamos a suponer que tienes un 85 en su primera prueba. ¿Qué le predecir a su segunda calificación de la prueba ¿Qué opinas tu maestro predeciría para su próxima calificación de la prueba ¿Qué opinas sus amigos podrían predecir para su próxima calificación de la prueba ¿Qué opinas sus padres podrían predecir para su próxima calificación de la prueba Independientemente de todo el blabbing que podría hacer a sus amigos y los padres, ellos y su profesor es muy probable que esperar a conseguir algo en la zona de los 85 que acaba de recibir. Pues bien, ahora vamos a suponer que a pesar de su auto-promoción a sus amigos, que sobre-estimación de sí mismo y figura que puede estudiar menos para la segunda prueba y así se obtiene un 73. Ahora lo están todos los interesados ​​y sin preocuparse de ir a anticipa que recibirá en su tercera prueba Hay dos enfoques muy probables para que puedan desarrollar una estimación independientemente de si van a compartirlo con ustedes. Pueden decirse a sí mismos, quotThis tipo está siempre soplando humo sobre su inteligencia. Hes va a conseguir otro 73 si hes suerte. Tal vez los padres tratan de ser más de apoyo y decir, quotWell, hasta ahora usted ha conseguido un 85 y un 73, por lo que tal vez debería figurar en conseguir alrededor de un (85 73) / 2 79. No sé, tal vez si lo hizo menos fiestas y no estábamos moviendo la comadreja por todo el lugar y si usted comenzó a hacer mucho más que estudia usted podría conseguir un mayor score. quot Ambas estimaciones están desplazándose hacia el promedio de las proyecciones. El primero consiste en utilizar solamente su puntuación más reciente para predecir el rendimiento futuro. Esto se llama un pronóstico promedio móvil utilizando un período de datos. El segundo es también un pronóstico promedio móvil pero utilizando dos períodos de datos. Vamos a suponer que todas estas personas que revienta en su gran mente han especie de que cabreado y decide hacer el bien en la tercera prueba para sus propias razones y poner una puntuación más alta frente a su quotalliesquot. Se toma la prueba y su puntuación es en realidad un Todo el mundo 89, incluyendo a sí mismo, está impresionado. Así que ahora usted tiene la prueba final del semestre por delante y como siempre se siente la necesidad de incitar a todos a hacer sus predicciones acerca de cómo hacer interminables en la última prueba. Bueno, esperamos que pueda ver el patrón. Ahora, con suerte se puede ver el patrón. ¿Cuál cree que es el más preciso del silbido mientras trabajamos. Ahora volvemos a nuestra nueva empresa de limpieza iniciado por su media hermana distanciada llamados silbido mientras trabajamos. Usted tiene algunos datos de ventas anteriores representados por la siguiente sección de una hoja de cálculo. Primero presentamos los datos para un periodo de tres moviéndose pronóstico promedio. La entrada de la celda C6 debe ser Ahora se puede copiar esta fórmula de celda a las otras celdas C7 a C11. Observe cómo los medios deja atrás los datos históricos más recientes, pero utiliza exactamente los tres períodos más recientes disponibles para cada predicción. También debe notar que nosotros no necesitamos realmente para hacer las predicciones para los últimos períodos con el fin de desarrollar nuestra predicción más reciente. Esto es definitivamente diferente del modelo de suavizado exponencial. He incluido el predictionsquot quotpast porque vamos a utilizar en la siguiente página Web para medir la validez de predicción. Ahora quiero dar a conocer los resultados análogos para un período de dos mover pronóstico promedio. La entrada de la celda C5 debe ser Ahora se puede copiar esta fórmula de celda a las otras células C6 a C11. Observe cómo ahora sólo se utilizan las dos piezas más recientes de datos históricos para cada predicción. Una vez más he incluido el predictionsquot quotpast con fines ilustrativos y para su posterior uso en la validación de previsión. Algunas otras cosas que son de importancia de aviso. Para un m-periodo en movimiento pronóstico promedio sólo el m valores de los datos más recientes se utilizan para hacer la predicción. es necesario nada más. Para un m-período de pronóstico promedio en movimiento, al hacer predictionsquot quotpast, observe que la primera predicción se produce en el periodo m 1. Ambas cuestiones será muy significativa cuando desarrollamos nuestro código. El desarrollo de la Función móvil media. Ahora tenemos que desarrollar el código para el pronóstico promedio móvil que se puede utilizar de manera más flexible. El código siguiente. Observe que las entradas son para el número de períodos que desea utilizar en el pronóstico y el conjunto de valores históricos. Se puede almacenar en cualquier libro que desee. Media móvil de función (históricos, NumberOfPeriods) As Single Declarar e inicializar las variables de artículo Dim Dim como variante Contador As Integer Dim Dim Acumulación As Single HistoricalSize como número entero Inicialización de variables de contador 1 0 Acumulación Determinación del tamaño de la matriz histórica HistoricalSize Historical. Count para el contador 1 Para NumberOfPeriods acumulando el número apropiado de la mayoría de los valores recientes observadas previamente Acumulación acumulación histórica (HistoricalSize - NumberOfPeriods contador) media móvil de acumulación / NumberOfPeriods el código será explicada en clase. Quiere posicionar la función de la hoja de cálculo para que el resultado del cálculo aparece donde debe recibir el following. Moving media Este ejemplo le enseña cómo calcular la media móvil de una serie de tiempo en Excel. Un avearge móvil se utiliza para suavizar las irregularidades (picos y valles) para reconocer fácilmente las tendencias. 1. En primer lugar, permite echar un vistazo a nuestra serie de tiempo. 2. En la ficha Datos, haga clic en Análisis de datos. Nota: no puede encontrar el botón de Análisis de Datos Haga clic aquí para cargar el complemento Herramientas para análisis en. 3. Seleccionar la media móvil y haga clic en OK. 4. Haga clic en el cuadro rango de entrada y seleccione el rango B2: M2. 5. Haga clic en el cuadro Intervalo y escriba 6. 6. Haga clic en el cuadro Rango de salida y seleccione la celda B3. 8. Trazar la curva de estos valores. Explicación: porque nos permite establecer el intervalo de 6, la media móvil es el promedio de los 5 puntos de datos anteriores y el punto de datos actual. Como resultado, los picos y los valles se alisan. El gráfico muestra una tendencia creciente. Excel no puede calcular el promedio móvil de los primeros 5 puntos de datos debido a que no hay suficientes puntos de datos anteriores. 9. Repita los pasos 2 a 8 para el intervalo 2 y el intervalo 4. Conclusión: Cuanto mayor sea el intervalo, más los picos y los valles se alisan. Cuanto más pequeño sea el intervalo, más cerca de los promedios móviles son los puntos de datos reales. ¿Te gusta este sitio web gratuito Por favor, comparte esta página en función de GoogleFORECAST Se aplica a: Excel 2017, Excel 2017, Excel 2010, Excel 2007, Excel 2017 para Mac, Excel para Mac 2011, Excel Online, Excel para iPad, Excel para iPhone, Excel para las tabletas Android, Excel Starter, Excel Mobile, Excel para teléfonos Android, Menos aplica a: Excel 2017. Excel 2017. Excel 2010. Excel 2007. Excel 2017 para Mac. Excel para Mac 2011. Excel en línea. Excel para el iPad. Excel para iPhone. Excel para las tabletas Android. Excel Starter. Excel Mobile. Excel para los teléfonos Android. Más. En este artículo se describe la sintaxis de la fórmula y el uso de la función PRONOSTICO en Microsoft Excel. Nota: En Excel 2017, esta función se ha sustituido por FORECAST. LINEAR como parte de las nuevas funciones de previsión. Su todavía disponible para la compatibilidad con versiones anteriores, pero considerar el uso de la nueva función en Excel 2017. Descripción Calcula, o predice, un valor futuro mediante el uso de los valores existentes. El valor predicho es un valor de y para un valor de x dado. Los valores conocidos son los valores de x y los valores de y existentes y el nuevo valor se predice mediante el uso de regresión lineal. Puede utilizar esta función para predecir las ventas futuras, los requisitos de inventario o tendencias de los consumidores. Sintaxis PRONÓSTICO (x, knownys, knownxs) La sintaxis de la función PRONÓSTICO tiene los siguientes argumentos: X Obligatorio. El punto de datos para el que desea predecir un valor. Knownys Obligatorio. La matriz dependiente o rango de datos. Knownxs Obligatorio. La matriz independiente o rango de datos. Observaciones Si x no es numérico, pronóstico devuelve el valor de error VALOR. Si knownys y knownxs están vacíos o contienen un número diferente de puntos de datos, devuelve el PRONÓSTICO N / A valor de error. Si la varianza de knownxs es igual a cero, entonces PRONÓSTICO devuelve el valor de error DIV / 0. La ecuación para el pronóstico es ABX, donde: y donde x e y son la muestra significa PROMEDIO (knownxs) y PROMEDIO (ys conocidas). Ejemplo de copia de los datos de ejemplo en la siguiente tabla, y pegarlo en la celda A1 de una nueva hoja de cálculo. Para fórmulas para mostrar resultados, seleccione y pulse F2 y, a continuación, pulse Intro. Si es necesario, puede ajustar los anchos de columna para ver toda la data. How calcular medias móviles en Excel Análisis de datos de Excel para los maniquíes, 2ª Edición El comando Análisis de datos proporciona una herramienta para el cálculo de movimiento y exponencialmente suavizada promedios en Excel. Supongamos, por motivos de ilustración, que you8217ve recoge información diaria de la temperatura. Desea calcular los tres días de media móvil 8212 el promedio de los últimos tres días 8212 como parte de algunos simples predicción del tiempo. Para el cálculo de medias móviles para este conjunto de datos, siga los siguientes pasos. Para calcular un promedio móvil, haga clic en primer botón de comando Análisis de datos Los datos tab8217s. Cuando Excel muestra el cuadro de diálogo Análisis de datos, seleccionar el medio de objeto en movimiento de la lista y haga clic en Aceptar. Excel muestra el cuadro de diálogo de media móvil. Identificar los datos que desea utilizar para el cálculo de la media móvil. Haga clic en el cuadro de texto Rango de entrada de la caja de diálogo de media móvil. A continuación, identifique el rango de entrada, ya sea escribiendo una dirección de rango de hoja de cálculo o usando el ratón para seleccionar el rango de hoja de cálculo. Su referencia de rango debe utilizar direcciones de celdas absolutas. Una dirección de celda absoluta precede a la letra de la columna y el número de fila de signos, como en A1: A10. Si la primera célula en su rango de entrada incluye una etiqueta de texto para identificar o describir los datos, seleccione las etiquetas en casilla de verificación Primera fila. En el cuadro de texto Intervalo, informe a Excel cuántos valores a incluir en el cálculo de la media móvil. Se puede calcular un promedio móvil utilizando cualquier número de valores. De forma predeterminada, Excel utiliza los más recientes tres valores para el cálculo de la media móvil. Para especificar que algún otro número de valores se utiliza para calcular la media móvil, introducir ese valor en el cuadro de texto de intervalo. Dile a Excel dónde colocar los datos de media móvil. Utilice el cuadro de texto Rango de salida para identificar el rango de hoja de cálculo en la que desea colocar los datos de media móvil. En el ejemplo de hoja de cálculo, los datos de media móvil se ha colocado en el rango de hoja de cálculo B2: B10. (Opcional) Especificar si desea un gráfico. Si quieres un gráfico que representa gráficamente la información media móvil, seleccione la casilla de verificación Gráfico de salida. (Opcional) Indique si desea información sobre el error estándar calculado. Si se desea calcular los errores estándar para los datos, seleccione los errores estándar de verificación. Excel coloca los valores de error estándar junto a los valores de media móvil. (La información de error estándar entra en C2:. C10) Después de terminar de especificar lo que se mueve la información promedio que está calculado y donde lo desee colocado, haga clic en Aceptar. Excel calcula la media móvil de información. Nota: Si Excel doesn8217t tiene suficiente información para calcular un promedio móvil de un error estándar, se coloca el mensaje de error en la célula. Se puede ver varias células que muestran este mensaje de error como una aplicación value. Spreadsheet de ajuste estacional y de suavizado exponencial Es sencillo para llevar a cabo el ajuste estacional y ajustar los modelos de suavizado exponencial usando Excel. Las imágenes de la pantalla y los gráficos siguientes se toman de una hoja de cálculo que se ha creado para ilustrar el ajuste estacional multiplicativo y suavizado exponencial lineal de los siguientes datos de ventas trimestrales de Outboard Marine: Para obtener una copia de la hoja de cálculo en sí, haga clic aquí. La versión de suavizado exponencial lineal que será utilizado aquí para los propósitos de demostración es la versión Brown8217s, simplemente debido a que puede ser implementado con una sola columna de fórmulas y sólo hay una constante de alisamiento para optimizar. Por lo general, es mejor utilizar la versión Holt8217s que tiene constantes de uniformización separados para nivel y la tendencia. El proceso de predicción se desarrolla de la siguiente manera: (i) en primer lugar los datos están ajustados estacionalmente (ii) a continuación, las previsiones se generan para los datos ajustados estacionalmente a través de suavizado exponencial lineal y (iii) finalmente las previsiones ajustadas por estacionalidad son quotreseasonalizedquot para obtener predicciones para la serie original . El proceso de ajuste de temporada se lleva a cabo en columnas D a través de G. El primer paso en el ajuste estacional es calcular un centrado de media móvil (realizado aquí en la columna D). Esto se puede hacer tomando el promedio de dos medias de un año de ancho que se compensan por un período de uno respecto al otro. (Una combinación de dos compensado promedios más que hace falta un único promedio para los propósitos de centrado cuando el número de estaciones es par.) El siguiente paso es calcular la relación de mover --i. e promedio. los datos originales dividido por el promedio móvil en cada período - que se realiza aquí en la columna E. (Esto también se llama el componente quottrend-cyclequot del patrón, en la medida de tendencia y ciclo económico efectos podrían ser considerados para ser todo lo queda después de un promedio sobre el conjunto de un año por valor de los datos. por supuesto, los cambios mes a mes en el que no se deben a la estacionalidad se pudo determinar por muchos otros factores, pero el promedio de 12 meses suaviza sobre ellos en gran medida.) la estimado índice de estacionalidad para cada estación se calcula con el promedio en primer lugar todos los coeficientes para esa estación en particular, que se realiza en las células G3-G6 usando una fórmula AVERAGEIF. Las proporciones medias se reajustarán a continuación, de modo que suman exactamente 100 veces el número de períodos en una temporada, o 400 en este caso, que se realiza en células H3-H6. A continuación, en la columna F, fórmulas BUSCARV se utilizan para insertar el valor del índice de temporada apropiada en cada fila de la tabla de datos, de acuerdo con el trimestre del año que representa. El CENTRADO media móvil y los datos ajustados estacionalmente terminar pareciéndose a esto: Tenga en cuenta que la media móvil normalmente se parece a una versión más suave de la serie ajustada estacionalmente, y es más corta en ambos extremos. Otra hoja de cálculo en el mismo archivo de Excel muestra la aplicación del modelo de suavizado exponencial lineal a los datos desestacionalizados, comenzando en la columna G. Un valor para la constante de alisamiento (alfa) se introduce por encima de la columna de previsión (en este caso, en la celda H9) y por conveniencia se le asigna el nombre de rango quotAlpha. quot (el nombre se asigna mediante el comando quotInsert / nombre / Createquot.) el modelo de LES se inicializa mediante el establecimiento de los dos primeros pronósticos igual al primer valor real de la serie ajustada estacionalmente. La fórmula usada aquí para la previsión del LES es la ecuación de una sola forma recursiva del modelo Brown8217s: Esta fórmula se introduce en la celda correspondiente al tercer período (en este caso, H15 celular) y se copia hacia abajo desde allí. Observe que el pronóstico LES para el período actual se refiere a las dos observaciones anteriores y los dos errores de predicción anteriores, así como el valor de alfa. Por lo tanto, la fórmula de predicción en la fila 15 se refiere únicamente a los datos que estaban disponibles en la fila 14 y anteriores. (Por supuesto, si deseamos utilizar simples en lugar de suavizado exponencial lineal, podríamos sustituir la fórmula SES aquí en su lugar. También podríamos utilizar Holt8217s en lugar de modelo Brown8217s LES, lo que requeriría dos columnas más de las fórmulas para calcular el nivel y la tendencia que se utilizan en el pronóstico.) los errores se calculan de la siguiente columna (en este caso, la columna J) restando los pronósticos de los valores reales. La raíz error cuadrado medio se calcula como la raíz cuadrada de la varianza de los errores más el cuadrado de la media. (Esto se deduce de la identidad matemática:. MSE VARIACIÓN (errores) (Promedio (errores)) 2) En el cálculo de la media y la varianza de los errores en esta fórmula, los dos primeros períodos se excluyen porque el modelo no comienza realmente la previsión hasta el tercer período (fila 15 en la hoja de cálculo). El valor óptimo de la alfa se puede encontrar ya sea cambiando manualmente alfa hasta que se encuentre el RMSE mínimo, o bien puede utilizar el quotSolverquot para realizar una minimización exacta. El valor de alfa que el solucionador encuentra se muestra aquí (alpha0.471). Por lo general, es una buena idea para trazar los errores del modelo (en unidades transformadas) y también para calcular y trazar sus autocorrelaciones en los retardos de hasta un año. Aquí es un gráfico de series temporales de los errores (desestacionalizados): Las autocorrelaciones de error se calculan utilizando la función COEF. DE. CORREL () para calcular las correlaciones de los errores con ellos mismos con un retraso de uno o más períodos - detalles se muestran en el modelo de hoja de cálculo . Aquí se presenta un gráfico de las autocorrelaciones de los errores en los primeros cinco rezagos: Las autocorrelaciones en los retardos del 1 al 3 son muy cercanos a cero, pero el aumento en el retardo 4 (cuyo valor es 0,35) es ligeramente molesto - que sugiere que la proceso de ajuste estacional no ha tenido un éxito completo. Sin embargo, en realidad es sólo marginalmente significativo. 95 bandas de significación para comprobar que es autocorrelaciones son significativamente diferentes de cero son aproximadamente más-o-menos 2 / SQRT (n-k), donde n es el tamaño de la muestra y K es el retraso. Aquí n es 38 y k varía de 1 a 5, por lo que la raíz cuadrada de n-k-menos-es de alrededor de 6 para todos ellos, y por lo tanto los límites para probar la significación estadística de las desviaciones de cero son más o menos plus - o-menos 2/6, o 0.33. Si varía el valor de alfa a mano en este modelo de Excel, se puede observar el efecto sobre la serie de tiempo y parcelas de autocorrelación de los errores, así como en el error de raíz media cuadrada, que se ilustra a continuación. En la parte inferior de la hoja de cálculo, la fórmula de predicción se quotbootstrappedquot en el futuro simplemente sustituyendo las previsiones para los valores actuales en el punto donde los datos reales se agota - es decir. donde quotthe futurequot comienza. (En otras palabras, en cada celda donde se produciría un valor de datos futuro, se inserta una referencia de celda que apunta a la previsión hecha para ese período.) Todas las otras fórmulas simplemente se copian desde arriba: Observe que los errores de las predicciones de el futuro están todos calcula a ser cero. Esto no significa que los errores reales serán cero, sino que simplemente refleja el hecho de que para efectos de predicción estamos suponiendo que los datos futuros serán iguales a las previsiones en promedio. Las previsiones LES resultantes para los datos ajustados estacionalmente este aspecto: Con este valor particular de alfa, que es óptima para las predicciones de un período hacia delante, la tendencia proyectada es ligeramente hacia arriba, lo que refleja la tendencia local que se observó durante los últimos 2 años más o menos. Para otros valores de alfa, se podría obtener una proyección tendencia muy diferente. Por lo general, es una buena idea para ver lo que ocurre con la proyección de tendencias a largo plazo cuando alfa es variada, ya que el valor que es mejor para la predicción a corto plazo no será necesariamente el mejor valor para predecir el futuro más lejano. Por ejemplo, aquí está el resultado que se obtiene si el valor de alfa se ajusta manualmente a 0,25: La tendencia proyectada a largo plazo es ahora más negativa que positiva con un valor menor de alfa, el modelo está poniendo más peso sobre los datos más antiguos en su estimación del nivel y la tendencia actual, y sus previsiones a largo plazo reflejan la tendencia a la baja observada en los últimos 5 años en lugar de la tendencia al alza más reciente. Este gráfico también ilustra claramente cómo el modelo con un valor menor de alfa es más lento para responder a quotturning pointsquot en los datos y por lo tanto tiende a hacer que un error del mismo signo durante muchos períodos consecutivos. Sus errores de pronóstico 1-paso-a continuación son más grandes que el promedio de los obtenidos antes (RMSE de 34,4 en lugar de 27,4) y fuertemente autocorrelated positivamente. El retraso de 1 autocorrelación de 0,56 supera con creces el valor de 0,33 calculado anteriormente para una desviación estadísticamente significativa de cero. Como alternativa al arranque por el valor de la alfa con el fin de introducir una mayor conservadurismo en previsiones a largo plazo, un factor quottrend dampeningquot a veces se añade al modelo con el fin de hacer que la tendencia proyectada a aplanar después de unos períodos. El último paso en la construcción del modelo de predicción es quotreasonalizequot las previsiones LES multiplicándolos por los índices estacionales apropiados. Por lo tanto, las previsiones reseasonalized en la columna I son simplemente el producto de los índices estacionales en la columna F y las previsiones LES desestacionalizados en la columna H. Es relativamente fácil de calcular los intervalos de confianza de las predicciones de un solo paso-a continuación realizadas por este modelo: en primer lugar calcular el RMSE (error de raíz media cuadrada, que es simplemente la raíz cuadrada del MSE) y luego calcular un intervalo de confianza para el pronóstico ajustados estacionalmente sumando y restando dos veces el RMSE. (En general un intervalo de confianza del 95 para obtener la previsión de un período hacia delante es más o menos igual a la previsión del punto más-o-menos-dos veces la desviación estándar estimada de los errores de predicción, suponiendo que la distribución de error es aproximadamente normal y el tamaño de la muestra es lo suficientemente grande, digamos, 20 o más. Aquí, el RMSE en lugar de la desviación estándar de la muestra de los errores es la mejor estimación de la desviación estándar de los futuros errores de pronóstico, ya que toma el sesgo, así variaciones aleatorias en cuenta.) los límites de confianza para el pronóstico ajustado estacionalmente se reseasonalized a continuación. junto con el pronóstico, multiplicándolos por los índices estacionales apropiados. En este caso, el RMSE es igual a 27,4 y la previsión ajustada estacionalmente para el primer período futuro (dic-93) es 273,2. por lo que el intervalo de confianza del 95 ajustada estacionalmente es 273,2-227,4 218,4 a 328,0 273.2227.4. La multiplicación de estos límites de los diciembre índice estacional de 68.61. obtenemos límites de confianza inferior y superior de 149,8 y 225,0 alrededor de la previsión punto Dic-93 de 187,4. los límites de confianza de las predicciones más de un período que se avecina en general, se ensanchan a medida que aumenta horizonte de pronóstico, debido a la incertidumbre sobre el nivel y la tendencia, así como los factores estacionales, pero es difícil de calcular en general mediante métodos analíticos. (La forma más adecuada para calcular los límites de confianza para el pronóstico del LES es mediante el uso de la teoría ARIMA, pero la incertidumbre en los índices estacionales es otro tema). Si desea un intervalo de confianza realista para una previsión de más de un período por delante, teniendo todas las fuentes de de error en cuenta, lo mejor es utilizar métodos empíricos: por ejemplo, para obtener un intervalo de confianza para un 2-paso por delante pronosticado, podría crear otra columna en la hoja de cálculo para calcular un pronóstico 2-paso adelante para cada periodo ( por bootstrapping la previsión de un paso por delante). A continuación, calcular el RMSE de los errores de pronóstico 2-paso adelante y utilizar esto como la base para un intervalo de confianza de 2 pasos de la ventaja.

No comments:

Post a Comment